
Towards Standard Control Protocol through Internet

Using MDE Approach

Bassem KOSAYBA
Department of Software Engineering & Information Systems

Damascus University, Syria

script.java@gmail.com

Raneem SALEH, Rain ALSALEH
4th year Students – Albaath University, Syria

Abstract - The computer sciences have witnessed a

real tendency for using Internet applications and as a result a

big number of techniques have existed and performed a lot of

development in a standard time, but the big development to the

internet applications has achieved by coming an XML

technique.

We propose in this paper a new protocol

“ControlXML” to standardize the remote circuits control

domain through Internet with benefiting of an XML technique.

By achieving it we compass some of the users' wishes. These

users own the feasible ideas, but they suffer from the

programming experiment dipping. In order to realize our

protocol we present a “model-driven framework”. We

determine two types of information. Information describes the

abilities of the circuit and information describes the method of

using the circuit to solve some problems.

To achieve that we produce two tools. The first tool

allows the circuit designer to specify the circuit abilities. The

second one allows the control circuit programmer to load a

control circuit specification (commands and states) in order to

build a control program specific to this circuit. After binding

the outputs of these tools we will have an XML file(s) which

will be sent to a remote virtual machine that can understand

the logical structure of this XML file(s) and generates control

signals to the circuit(s) around it.

Keywords - ControlXML protocol, (MDE) Model Driven

Engineering, Meta-modeling, Control framework, Circuit
Control standardization.

I. INTRODUCTION

We propose a new protocol “ControlXML”. This
protocol permits to standardize the control domain of remote

circuit(s) through Internet .We can say that our new protocol

is similar to the following protocols: VoiceXML which

represents the ability of transferring the sound as text

through Internet, WebServices which is a protocol for

calling far methods through Internet and SVG which is

concerning to transfer of images as texts through Internet.

The common base between all theses protocols and mine is

the ability to send the information as XML files through

Internet. And in the receiver side, there is a program that can

understand the file logical structure.

Indeed, we use MDE (Model Driven Engineering) approach

to realize our protocol. MDE is a new application

development approach aims to automate the use of models

in order to build systems. In our work, we have used meta-

models to separate between two basic domains: the circuit

specification domain and the circuit programming one. The

circuit specification domain includes the concepts
permitting the definition of the circuit's commands and

states. The circuit programming domain permits to apply

control instructions (if, while, for and delay) on circuit's

state and commands in order to define the circuit control

program.

Actually, we give our protocol users two graphical

tools. The first tool allows the circuit designer to determine

his/her circuit's capabilities and the another one allows the

control circuit programmer to load a control circuit

specification (commands and states) in order to build a

control program specific to this circuit. This control
program binds the circuit's commands and states with the

control flow concepts (if, for, while and delay) using

binding concepts (condition, and, or…etc). The circuit

control program can be sent to a far computer deals with it.

Our paper will present in section 2 our objectives and
approach. Section 3 explains the framework implementing

our approach. Section 4 gives a case study to show how to

use our control framework. Section 5 gives some

conclusions and future visions.

II. OBJECTIVES AND APPROACH

We can easily remark that the circuit programmer
needs to know about circuit’s capability to use it in order to

solve his/her problems. Also, the circuit designer is the

responsible for the circuit capabilities specification and

he/she will not necessary being the end user. So, we suggest

the separating between the circuit specification domain and

the circuit programming domain. From a control viewpoint,

the circuit specification contains the definition of circuit

mailto:script.java@gmail.com

commands and states. In addition, the circuit program is a

sequence of circuit commands.

Furthermore, we think to use models in order to

organize the development of a circuit program. Models are

abstractions of systems. High levels of abstraction allow

easier understanding and handling of systems. Moreover,

new approaches like the MDE (Model Driven Engineering)

[3] aim to automate the use of models. MDE encourages the

identification and the separation between the different

system concerns. MDE structure the application

development in several models and model transformations.
In MDE framework, we specify a meta-model for each

system aspect. So, we can design separately the system

different concerns through the definition of system models

[4]. After that, the MDE framework builds the system

through the model transformations [6]. These

transformations permit the integration of system different

concerns. The main idea of MDE approach is to use the

models at different levels of abstraction. After that, the

MDE process specifies a sequence of models and defines

how to go starting from a model to another model [5].

Briefly, MDE allows us to specify a methodology for
defining problems and how to go towards solutions.

Moreover, MDE allows us to capitalize the problem

specifications. The problem specifications are the models

used in MDE process. Also, MDE allows us to capitalize the

know-how to go from the specification to the solution. The

know-how specifications are the model transformations used

in MDE process. The model transformation defines clearly

the rules that permit to go from model to another.

We provide a model-driven framework to realize

our protocol. Figure 1 shows this framework’s three meta-

models and their relations. The first meta-model specifies
the circuit domain (states, commands …), the second

specifies the control instructions which can be applied (if

,for….) in order to build a circuit command sequence and

the third binds between the circuit concepts and the control

concepts.

Figure 1: FRAMEWORK META-MODELS

III. FRAMEWORK IMPLEMENTATION

In order to implement the already presented

framework: we have to specify the three meta-models

presented in the figure 1 (i.e. their concepts and relations).

Also, we have supported these meta-models by graphical

tools. We have used the framework presented in [1] [2] in

order to produce these tools. This framework [1] [2]
produces graphical modeling tools starting from meta-

models. These graphical tools allow the users to define

models conform to the meta-models used to produce them. In

the following sub-sections, we will present in details the

three meta-models of our control framework and the

produced graphical tools.

A. Circuit meta-model

Figure 2 shows the circuit meta-model. Up to now,

we just need to know all possible circuit states and

acceptable commands. These concepts enable the circuit

producer to define the model that specifies his/her circuit

capabilities.

Figure 2: CIRCUIT META-MODEL CONCEPTS

The circuit producer can use instances of the

concept “Command” in his/her circuit model in order to

define his/her circuit acceptable commands. We think that

we can determine for each circuit command: the binary

output, a brief description and constraints. There are two

special types of commands: “One_way” command and

“Blocant” command. We suppose that we can send a
command to the circuit after “Blocant” command if the

circuit enters in a defined state. The “Blocant” command

defines this state. The “One_way” command can impose a

delay that we will wait its end in order to send another

command toward the circuit. Such, the role of circuit

programmer is simplified because he/she is liberated from

dealing with all these details. In fact, he/she is concerned by

the command sequence and the virtual machine is concerned

by these details and when to send a command after another.

The circuit producer can use instances of the

concept “State” in his/her circuit model in order to define

his/her circuit states. We think that we can determine for
each state: the special values and their meaning. There are

two special types of states: “Stat_sensor” state and

“Stat_metrics” state. We can use instances of the

“Stat_sensor” concept to describe the circuit environment

states as the temperature, the pressure, etc. Instances of the

“Stat_metrics” concept can be used in order to describe the

devices states (e.g. voltage, etc.).

Until now, we focus on the general organization of

our framework. After several real experiences using this

framework, we can strictly specify all the concepts

necessary to define the circuit models.

Starting from this circuit meta-model, we have
automatically produced the graphical tool presented in

Figure 3. This tool is useful for the “circuits producer”, it

allows him to specify his circuit(s) in a standard way.

A model defined using this tool describes the states

and commands of a circuit. This model can be exported as

XML file. This file will be used by the circuit programmers

who use our control framework. These programmers have

not to know XML language in order to program the circuit

because we have produced another graphic tool that help

them as we will see in the sub-section C.

Figure 3: A GRAPHICAL TOOL FOR THE CIRCUIT PRODUCER

B. Control meta-model

Figure 4 shows the control meta-model. In this meta-

model, we specify the principal concepts of control

instructions (if, for and while). These concepts are needed

by the circuit programmer in order to define the circuit

command sequence.

Figure 4: CONTROL META-MODEL CONCEPTS

The Concept “Control” is abstract. We have

specified it in the meta-model in order to be able to define

nested “control” instances. The meta-model’s three principal

control concepts are: “if”, “for” and “while”. These concepts

inherit from “Control” concept. An instance of “if” can be

used by the circuit programmer in order to choose between

two groups of circuit commands according to a circuit state.

An instance of “for” is used to repeat a group of circuit

commands for “n” times. An instance of “while” can be

used by the circuit programmer to repeat a group of circuit

commands while a circuit state has a defined value.
 We have not produced a graphical tool starting

from this meta-model because there is no need to create a

control model independently on a specific circuit.

C. Binding meta-model

A circuit program model binds between the circuit

model elements and the control elements. The relations that

enable this binding are specified in the Binding meta-model.

Figure 5 shows a part of the Binding meta-model. In this

part, we have defined the concept “Logic” that defines a

logical relation between two circuit states. There are two

type of the “Logic” concept: “Or” and “And” concepts.

Also, we add a relation “Logic” between the circuit states.

This relation permits to create a complex state from several

simple states using instance of the “Logic” concept. Also,

we have specified the “Condition” relation between the

“Control” concept and the “State” concept. This relation is
inherited by the concept “if” because this latter inherits from

the “Control” concept. We have defined a relation “Then”

between the “if” concept and the “Command” concept. An

instance of this relation permits to choose some circuit

commands in case the “condition” instance related to an “if”

instance has been verified. The “Else” relation between the

“if” concept and “Command” concept permits to choose

some circuit commands in case the “condition” instance

related to the “if” instance has not been verified.

In the same way, we have defined the relations

between the control meta-model concepts “while” and “for”
and the circuit concepts. Moreover, we have added the

“Delay” command that permits to the circuit programmer to

separate between two circuit commands by a period of time.

This command is added here because it is specific to the

circuit programmer and it is not a real circuit command but

it is a directive for the virtual machine.

Figure 5: BINDING META-MODEL CONCEPTS

Starting from the binding meta-model we have

automatically produced a modeling graphical tool. This

graphical tool enables the “circuit programmer” to load a

circuit model and to create a command sequence specific to

the loaded circuit. Figure 6 shows the produced tool.

A model defined using this tool represent a control program

model specific to a certain circuit. This model can be

exported as XML file. This file will be sent to a far

computer related to the circuit. On the far computer, the
virtual machine presented in the sub-section D reads this file

and sends the appropriate signals to the related circuit.

Figure 6: A GRAPHICAL TOOL FOR CIRCUIT PROGRAMMER

In fact, the graphical tool presented in figure 6
assists the model transformation process needed to bind the

circuit model and the control model. We would refer here

that we were able to produce this binding tool because we

have defined the binding concepts as a meta-model.

D. Virtual Machine

The virtual machine is an XML parser that can

understand the logical structure of the received XML file.

The XML parser wait for a logical structure conforms to the

Binding meta-model. So, This file represents a "circuit

control program". This representation is independent from

all technologies, plate-forms and programming languages.

Our virtual machine transforms this program to control

signals and sends them to the control circuits. Finally, we

must refer that the virtual machine programming is not

limited with a specific programming language and it can be

supported by mobiles, personal computers and so on.

IV. EXPERIMENT

In order to explain how to use our control framework, we
present here a virtual case study. We want developing a

program to control a car glass wiper circuit.

As it shown in figure 7 our circuit simply consist of step

Motor attached to a bar ends with a simple light emitter and

two sensors S, S2.
When sensor faces the light it is triggered and outs (1) while

the second sensor outs (0).

Figure 7: A CAR GLASS WIPER CIRCUIT

We assume that the circuit provides the next four commands:

 Start.

 Move_Right : let bar move toward right.

 Move_Left : let bar move toward left.

 Stop.

The circuit producer can use the circuit editor tool in order to

specify this circuit capability as it is shown in Figure 8. After
that, he/she can export this specification as an XML file and

distribute this XML file to the persons who want

programmer this circuit. A simplified format of this circuit

specification is shown in the figure 9.

Figure 8: CIRCUIT SPECIFICATION USING THE CIRCUIT EDITOR

Figure 9: CIRCUIT SPECIFICATION AS XML FILE

Let’s suppose that one wants to use our control framework in

order to control this circuit. So, he/she must load the figure 9

circuit specification in the circuit programmer editor. After

that, he/she uses the circuit programmer editor to specify

graphically his/her circuit control program. Then, he/she

exports his/her circuit control program as XML file. This file

will be loaded by a virtual machine connected to the glass

wiper circuit. The virtual machine transforms this XML file
into control signals towards the glass wiper circuit.

V. CONCLUSION AND PERSPECTIVES

This paper presents a proposal for a new protocol

“ControlXML” to control the different devices through

Internet. Moreover, this protocol will be used as MDD

(Model Driven Development). So, we have provided a

framework that includes several models and model

transformation process. Furthermore, we support this

framework by graphical tools necessary to define the needed

models and a graphical tool to bind the control models and
the circuit models, this configuration give us a standard way

in building circuits and control of them.

We used virtual machine which is a program written by Java

language (or any other languages). This program understands

the logical structure of XML file and transforms it to control

signals whose send toward the circuits.

From this framework, we attend to build programs to control

complex systems as robots. The robot contains several

control circuits that must work in a synchronized way. So,

we must be able to describe the synchronization information

between the combined circuits. Then, we have to specify

synchronization concepts in the binding meta-model. Such,

one can change rapidly the robot program and send the new

program to the robot through Internet.

VI. A CKNOWLEDGEMENTS

Finally, we would like to thank Dr. Malek ALI for his

help that facilitates our work and that allows us to begin this

research in the Albaath University.

REFERENCES

[1] Bassem Kosayba, “A framework for Model Driven Production of

Graphic Modeling Tools”, IEEE ICCTA, Damascus, Syria, April
2006.

[2] Bassem Kosayba, Raphael Marvie, Jean-Mark Geib, “Model Driven

Production of Domain-Specific Modeling Tools”, In 4th OOPSLA
Workshop on Domain-Specific Modeling (DSM’04), Vancouver,

Canada, October 2004.

[3] S. Kent, “Model Driven Engineering”, Third International
Conference on Integrated Formal Methods – 2002.

[4] Jean BEZIVIN. “On the Unification Power ofModels. Software and

System Modeling”, 4(2) :171–188, 2005. http://www.sciences.univ-
nantes.fr/lina/atl/www/papers/OnTheUnificationPowerOfModels.pdf.

[5] Marten J. VAN SINDEREN Giancarlo GUIZZARDI, Luis Ferreira

PIRES. “On the role of Domain Ontologies in the design of Domain-
Specific Visual Modeling Languages”. In The Second Workshop on

Domain-Specific Visual Languages at OOPSLA, Seattle, WA, USA,
November 2002. http://www.cis.uab.edu/info/OOPSLA-

DSVL2/Papers/Guizzardi.pdf.

[6] Jean BEZIVIN. “From Object Composition to Model Transformation

with theMDA”. In TOOLS’USA, Volume IEEE TOOLS-39, Santa
Barbara, August 2001. http://www.sciences.univ-

nantes.fr/info/lrsg/Recherche/mda/TOOLS.USA.pdf.

http://www.sciences.univ-nantes.fr/lina/atl/www/papers/OnTheUnificationPowerOfModels.pdf
http://www.sciences.univ-nantes.fr/lina/atl/www/papers/OnTheUnificationPowerOfModels.pdf
http://www.cis.uab.edu/info/OOPSLA-DSVL2/Papers/Guizzardi.pdf
http://www.cis.uab.edu/info/OOPSLA-DSVL2/Papers/Guizzardi.pdf
http://www.sciences.univ-nantes.fr/info/lrsg/Recherche/mda/TOOLS.USA.pdf
http://www.sciences.univ-nantes.fr/info/lrsg/Recherche/mda/TOOLS.USA.pdf

